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AbslmeL A we-fluid, dissipative magnetohydrodynamic model of plasma equilibrium 
in a lorus is considered. The equations include inertial forces, finite resistivity and 
viscosity, and a panicle source which sustains the pmasure gradient in lhe plasma; 
vismsity is desaibed by the Braginskii operator. Plasma density, nesistivity and viscosity 
mefficiene are assumed lo k uniform. A boundary-value pmblem in a general tomidal 
domain is formulated, no furlher assumption on the domain king made b i d e s  a 
sufficient regularity of its boundary. The system of equations is reduced to a problem 
with unknowns p ,  v ,  B I& denotes the scalar pressure, v the Row velocity, B the 
magnetic field). A functional setting of the equations is established and, generalizing 
the classical mathematical techniques adopted in the theory of viscous incompressible 
R o w  to invPstigare the solvability of the steady-state NavierStokes equations, a problem 
for weak solutions is formulated which is shown to be equivalent To solving a nonlinear 
equation in a separable Hilben span. Then, by analysing the Braginskii nsoosity in the 
established functional framework, we find pmperties which allow us to write the abwe 
equation as a 6xed-point equation. The main results of our analysis are the following: 
(i) we prove the existence of at least one weak solution if the source is sufficiently 
small, or viscosity and resistivity sufficiently large; (ii) we obtain an estimate of the 
solution(s); (iii) we prove that, under a mnditian of the same ldnd as that for existence, 
but more Yringent, there exists only one mlution; and (iv) the well known existence and 
uniqueness results for the steady-state Navier-Stokes problem are recovered when the 
magnetic field is set equal to zero. 

1. Intduction 

The one-fluid, ideal, magnetohydrodynamic (MHD) model is commonly adopted to 
describe the equilibrium of a plasma contained in a torus. According to the ideal 
MHD model, the pressure gradient is simply balanced by the magnetic force, i.e. the 
equations 

V p = j x B  j = V x B  

hold, where p denotes the scalar pressure, j the current density and B the magnetic 
field (we assume that p,, = 1 throughout this paper). The effect of the plasma 
flow velocity on the force balance is not taken into account. As is well known, in 
the presence of axial symmetry solving these equations reduces to solving a two- 
dimensional elliptic equation, the LiistSchliiter-GradShafranov equation. 

0M54470192/061575+17$04.50 Q 1 9 2  IOP Publishing Ltd 1515 
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This model has been thoroughly analysed from a theoretical viewpoint by Grad 
(1%7), who showed that non-pathological MHD equilibria are unlikely to exist in 
the absence of axial symmetry. This is connected, as is well known, to the con- 
straint $ ds/B = constant which has to be imposed on rational surfaces, this being 
unlikely to be possible for a low p plasma. Stellarators are typical examples of 
non-axisymmetric configurations, while tokamaks are, in principle, axisymmetric; the 
finite number of toroidal field mils, however, gives rise to small deviations from this 
symmetry in tokamaks. 

Moreover, we. remark that these phenomena are most likely responsible for the 
lack of convergence, at relatively large p, which takes place when one applies the 
Spitzer’s iterative procedure (Spitzer 1958) to calculate the self-consistent magnetic 
field. 

The need to amend the ideal MHD model, especially if the domain is lacking in 
symmetry, seem therefore well grounded and of significance for the study of plasmas 
confined by means of a magnetic field. For this purpose, the extensive literature 
concerning the theory of dissipative flow is of great relevance. In fact, on the basis of 
the mathematical theory of viscous incompressible flow (Ladyzhenskaya 1963, Rmam 
1979), one can conjecture that the mathematical pathologies highlighted by Grad can 
be due to the ideal character of the model which he analysed, and that the lack of 
symmetry of the domain can affect the shape of the equilibrium, but not preclude the 
existence of an equilibrium. 

From a physical viewpoint, one can expect that the account in an MHD model of 
dissipative terms leads to a smoothing of all mathematical singularities. Moreover, 
the account of any force depending upon the plasma flow velocity and, in general, 
non-perpendicular to the magnetic field (e.g. the inertial force, the viscous force, the 
frictional force) leads to a decoupling of the magnetic surfaces from the pressure 
surfaces, the magnetic field being no longer constrained to be normal to the pressure 
gradient. 

A dissipative model of plasma equilibrium, which obviously requires the presence 
of source terms in order to sustain the pressure gradient, was already addressed by 
Kruskal and Kulsrud (1958) who heuristically proved existence and uniqueness of 
solutions in the limiting case of low pressure. More recently, a dissipative model 
including resistivity and friction, but dsregarding inertia and viscosity, was addressed 
(Wohig 1986). In this paper, we analyse a model whose equations include inertial 
forces, finite resistivity and viscosity, and a plasma source, and address the question 
of existence and uniqueness of solutions. The analysis is founded on the classical 
mathematical techniques adopted in the theory of viscous incompressible flow to 
investigate the solvability of the steady-state NavierStokes equations. 

As the problem is nonlinear, the question of uniqueness is of no less significance 
than that of existence; here, we only derive a sutficient condition for uniqueness, and 
defer a more extensive analysis of bifurcation phenomena for this model to future 
work 

This paper is organized as follows. Section 2 contains an account of the model 
and the formulation of a boundary-value problem whose unknowns are the scalar 
pressure, the flow velocity and the magnetic field. Section 3 is concerned with the 
functional setting of the equations; suitable spaces of functions are introduced and a 
problem for weak solutions is established generalizing the techniques of mathemati- 
cal hydrodynamics. In section 4, we show that the weak problem reduces to solving 
a nonlinear equation in a separable Hilbert space and, by analysing the Braginski 
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viscosity in the established functional framework, we find properties which allow this 
equation to be written as a ked-point equation; the study of the Braginskii viscosity 
yields results of straightforward physical significance. By applying the LerayScbauder 
principle (Gilbarg and 'Itudinger 1983), we obtain a mndition under which the k e d -  
point equation has at least one solution, for which we obtain an estimate. Section 5 is 
concerned with the uniqueness of the solution; we prove that it holds under a condi- 
tion of the same kind as that for existence, but which is more stringent. In section 6 
we concisely summarize our main results and point out the questions that seem to 
deserve further consideration. Finally, in appendix A the well known existence and 
uniqueness results for the steady-state NavierStokes problem are recovered setting 
the magnetic field equal to zero, and in appendix B some non-trivial calculations are 
elucidated. 

2. The model 

We assume that the equilibrium of a plasma, filling a toroidal region fi of the space 
R3, can be described by the following set of one-fluid, dissipative MHD equations: 

p(v .V)U = - V p + j  x B + @U (1) 

qj = E + U x B (2) 

j = V x B  (3) 

V . ( p v ) = S  (4) 

V . B = O .  (5) 

Here, p is the plasma density, 7 the resistivity, U the flow velocity, B the magnetic 
field, j the current density, p the scalar pressure, E (= -V4) the electric field, S 
a particle source which sustains the pressure gradient in the plasma. Moreover, VV 
is the Braginskii viscous force field (Braghkii 1%5) given by  VU)^ = -an,,/as,, 
r i j  = C,=orofi,Woij (yo =-I for a = 0,1,2 and 7, z 1 for a = 3 , 4 )  where 
W all . .  = A,ij,kr(h)WkI (repeated indices are summed); here, h B/IB(  and W,, 
is the rate-of-strain tensor: W,, = a,v, + a,", - $6,,V. U (= W,,); the coefficients 
A,ii,k,, which are polynomials in h, are given on page 250 of Braginskii (1965). 

The viscosity coefficients p, (a = 0, ..., 4) are positive and depend on IBI 
via W T ,  where w is the gyrofrequency and T is the collision time. The coefficient po 
describes the bulk viscosity, p1 and f i2 the shear viscosity, pa and pq the gyroviscosity. 
Also, pLo is independent of the magnetic field, while pL7 (7 = 1,. . . ,4) has an upper 
bound which is independent of the magnetic field. Shear Viscosity and gyroviscosity 
tend to zero as IBI -t 00. In order to exclude this pathological situation, we introduce 
the approximation B Bo in the viscosity terms, Bo being the external vacuum field 
whose precise definition will be given later on. Since lBol h bounded in E, the 
viscosity coefficients p, have a lower bound: pa 2 ,Ti > 0, for all a = 0,. . . ,4. 
Physically speaking, this implies that any flow velocity field (except the vanishing 
one) leads to dissipation of energy by the viscous forces. Note that, because of this 
approximation, the viscosity operator V is independent of the unknown magnetic 
field. 

4 
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The system (1)-(5) is incomplete, since the equation of state correlating the 
density p and the pressure p is missing. The model which will be analped in this 
paper is that of a uniform density, p = constant. With p a pT (where T denotes 
the temperature), the pressure gradient is proportional to the temperature gradient. 
Such a model is also supported by experimental results in stellarators, where very 
flat density profiles and peaked temperature profiles are found in electron cyclotron 
heated plasmas. It is this approximation which allows the system (1)-(5) to be 
reduced to the equations of incompressible fluid dynamics and to make use of the 
mathematical techniques developed in that field. 

A complete description of the equilibrium would include an energy equation for 
the temperature T ,  with a given energy source Q and boundary conditions. In this 
case, the density would be, in general, inhomogeneous and should be determined by 
equations (1) and (4). In the model with a uniform density which we analyse in this 
paper the temperature is determined by the pressure; the energy equation may then 
be used to calculate the energy source Q which is needed to sustain the temperature 
profile. A weak point of this model is that boundary conditions on T must be ignored. 

The resistivity q is a function of temperature, but we neglect this dependence and 
consider q also to be uniform. Similarly, the viscosity coefficients p, (a = 0 , .  . . ,4)  
are approximated by constants. At the end of section 4 we shall discuss the influence 
on our results of the assumption of uniform plasma density, resistivity and viscosity 
coefficients. 

Moreover, as far as the electric field is concerned, it is, in general, described by a 
multivalued potential + containing the toroidal loop voltage; therefore, the model is 
applicable to tokamak equilibria with flat density profiles too. However, in the first 
part of the analysis we consider the case without loop voltage; later on, it will be 
shown how the results are modified by a finite loop voltage. 

We proceed by reducing the system (I)+) to a problem with unknowns p , v , B ;  
let us use equation (3) in (1) and (2), and take the curl of equation (2). Thus, we 
obtain 

p ( v . V ) v  = - V p + ( V  x B )  x B + Vu 

q V x  ( V  x B )  = V x ( U  x B )  

p v . v  = s 
and V .  E = 0. 

We supplement the system (6)-(8) with the following boundary conditions: 

v = v0 on r (9) 

B . n = O  and q(V x B) x n = ( v o .  n)B on r (10) 

where r = OR is the boundary of i2 and n is the unit outward normal on r. 
The second condition of equation (10) expresses the requirement that the tangential 
component of E vanishes on r (the boundary is assumed to be a perfectly conducting 

We assume that $2 is a toroidal domain (i.e. an open connected set) of R3, and 
that the boundary r is a manifold of class C". Moreover, we assume that R is 
Lipschitz (Marti 1986), so that it is regular enough to apply the Rellich-Kondrachov 

wall). 
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theorem later on (see section 4). Concerning S and U,,, they are assumed to be 
smooth (S E Cm@) and U,, E (Cm(13)3; is the closure of Sl) and to fulfil the 
compatibility condition p s r  dou,, . n = J, d3z S(z).  

The domain R is not simply connected; specifically, it is doubly connected. Prob- 
lem (6H10) becomes well posed by prescribing the wlue of the toroidal flux of B 
(Sermange and Rmam 1983, Foias and Rmam 1978). Let Bo E (Cw(fi))3 be the 
field having the prescribed toroidal flux, and fulfilling the following equations: 

V . B , , = O  and V x B , , = O  inn 
('1) 

B o . n = O  on r. 
Because of the topology of Sl, problem (11) has non-trivial solutions. Now we set 

B = B, + B p  (12) 

the field B ,  being our new unknown. In the following we shall omit the subscript p. 
As regards the flow velocity field, let v s  E (Cm(a))3 be one of the solutions of 

the following problem: 

In the following we shall consider v s  as given and Fed. Setting 

u = v s + u  (14) 

the field U becomes our new unknown. 

unknowns p, U and B we have the following problem: 
Next, we me equations (12) and (14) into the system (6)-(10); thus, for the 

p ( u . V ) ~ s  + p ( u S .  V ) U +  ~ ( u . V ) U  - (Bo.  V ) B  - ( B  .V)Bo - ( B  . V ) B  

+ V ( P  + flBo + BIZ) - VU = fs + ( B o .  V)Bo (15) 

S 
P 

qV x (V x B )  + - (Bo + B )  - ( B , . V ) v S  - ( B .  V ) U ~ -  ( B 0 . V ) u -  ( B  .V)U 

+ ( v s  . V ) B ,  + ( u s .  V ) B  + (u.V)B, ,  + ( u . V ) B  = 0 (16) 

v . u = o  V * B = O .  (17) 

Th$ system is s??pp!ementp!! gt!! the fn!!nwi!!g hnund.ry m.n.di!ians: 

u=O o n r  (18) 

B.n=O and q ( 0  x B )  x n = ( u s  n ) ( B ,  + B )  on r. (19) 

Here, well known identities as well as equations ( 5 )  and (8) have been used. More- 
over, the field fs appearing in equation (15) is defined hy 

fs L - p ( u s .  V)u,  + vu,.  (20) 

Note that fs is a given quantity. It will play the role of an external force field. 
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3. Functional setting of the equations 

Let L2($7) be the space of real-valued functions on $7 which are square integrable 
for the Lebesgue measure d3z = d z ,  dz, dz,; this is a Hilbert space for the scalar 
product ( [ , c )  = Jnd3zE(z)['(z). Let H"'($7) be the Sobolev space of functions 
which are in L2($7) together with their weak derivatives of order less than or equal 
to m (Adam 1975); H r ( $ 7 )  is the Hilbert subspace of Hm($7) made of functions 
vanishing on r. Moreover, we use the notation L 2 ( n )  = (L2(n)),,  Hm(R)  = 
(H"'($7))3,  W"(n) = (&"($7))3. 

M Spada and H Wobig 

We shall use the following spaces: 

V ,  = { U  E (C,m($7))3,V. U = 0 )  

V, = the closure of V,  in Hd(0) 

V, = B E  ( C m ( a ) ) 3 , V .  B = O,B.nl,  = 0 and 

V, = the closure of V, in ~ ' ( n )  

where C is any smooth manifold of dimension two such that the open set $7 \ C is 
simply-connected and Iipschitz (i.e. C is not tangent to r); roughly - . .  speaking, C is a 
poloidal cut. 

(2ij 1 d u B  . n  = 0 ( L 

We equip VI with the scalar product 

((.,U'))I = ( + ,  a i 4  (22) 

where 8, = and, as always, repeated indices are summed. This is a scalar 
product on H,'($7) thanks to the Poincare inequality, and provides the norm on V, 
given by llvll1= N % V ) ) P .  

We equip V, with the scalar product (Sermange and Rmam 1983) 

( (B,B' ) ) ,  = (V  x B , V  x B' ) .  (23) 

The topology of $7 is here of fundamental importance: since R is doubly mnnected, 
this bilinear form is actually a scalar product on V, only if (see equation (21)) the 
constraint of zero toroidal flux is imposed. Such a very technical result can be 
deduced from the theorems proved in Foias and Rmam (1978). The scalar product 
(U) defines a norm on V, given by llBl12 = { ( (B ,B) ) , } ' l 2 ,  which is equivalent to 
that induced by H1($7) on V,; see Sermange and Rmam (1983). 

Finally, we introduce the product space 

v = v, x v, (24) 

and equip it with the scalar product 

((@,a')) = F*((u ,u' ) )~  + V ( ( B , B ' ) ) ~  for all @ = ( v , B ) ,  @' = ( v ' ,B ' )  E V 

(25) 

where p* G f min,=,,,,, pa. This scalar product provides the norm on V given by 
ll@ll = {((@,@))}l/z. 
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We proceed now by establishing a weak formulation of problem (15)+9). 
Let w assume that p, U ,  B is a smooth solution. The first step is to multiply 

equation (15) by a test function w E V ,  and integrate over a. Note that, for all 
C E C"(n), we have 

and also 

/ n d 3 z [ ( B 0 . V ) B O ] . w  = L d 3 z [ ( V x  B o ) x B , + V ( f ~ B o ~ Z ) ] ~ w = O  (27) 

where we have used equations (11) and (26). Concerning the quantity ( - V U , W )  
arising from the left-hand side of equation (U), we proceed in the following way: let 
us introduce the following bilinear form 

C:V1 x VI-R 

( a , b )  - & ( a , b )  

One can easily check that, since U is assumed to be a smooth solution and w to 
belong to VI, the identity ( - V u , w )  = E(u,w) holds. Moreover, by using trivial 
inequalities as well as t h e  CauchySchwarz inequality for sums and for integrals, we 
can easily convince ourselves that, Va E V, k e d ,  the mapping 

C(a,.):V, -E4 

b -  L(a,b) 

is a bounded linear functional (we recall that the coefficients Aaij ,kl  are polynomials 
in h). Therefore, by using the Riesz representation theorem, we see that there exists 
one and only one 5 E VI such that E(a,b)  = ((5,b)),Vb E V,. Since, for a E V, 
k e d ,  the element 5 E VI is unique, we can give the following good definition of the 
operator E: 

- I  

P .  11 - 1 1  
U .  ' ]  - '1 - 
a Y Ea I 5 .  

It is also advantageous to introduce the operator E by setting E I p*E so that, 
finally, we have 

( -Pu,w) = f i * ( ( E ~ t w ) ) i *  (31) 

Note that the operator k is linear (and, hence, the operator E), as C is a bilinear 
form. 
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In order to shorten the notation, we introduce a trilinear form on (H1(n))3 by 
setting 

b(t ,E',E") = d3xE; (a iE ; ) ty .  (32) n 
This form is continuous (Sermange and Xmam 1983). 

ously mentioned projection of equation (15) yields the following (weak) equation: 
~*((Eu,w)) i  + p b ( u , v s , w )  + pb(vs ,u ,w)  + pb(u,u ,w)  

- b(Bo, B ,  w )  - b ( B ,  Bo, w )  - 

Thus, by using equations (26)-(27) and (31) as well as definition (32), the previ- 

9 w )  = ( f s ,  w ) .  (33) 
Note that the right-hand side of equation (33) makes sense because, under our 
hypotheses, we have that fs E (Cm(fi))3. 

Next, let us deal with equation (16) and remember we are assuming p, U, B to be 
a smooth solution. We proceed in the following way (see also Sermange and Rmam 
(1983)): we multiply equation (16) by a test function C E V, and integrate over Q. 
Note that the identity 

d31[V x (V x B ) ] . C  = d 3 z ( V  x B ) . ( V  x C )  - du[(V x E )  x n] . C  J ,  J ,  J ,  
holds. In its last term we use equation (19); moreover, performing some integrations 
by para in the projection of equation (16) we see that several cancellations take 
place. AF, a result of this straightfonvard calculation, we obtain the following (weak) 
equation: 
7/((BrC))z + b(u,Bo + B , C ) - b ( B o  + B , u , C )  

- ~ ( B ~ + B , v ~ , C ) - ~ ( V ~ , C , B ~ + B ) = O  (34) 
where we have used equation (23). 

introduce the following operator: 
In order to establish a problem for weak solutions in the product space V ,  we 

u : v - v  
'4 = ( u , B )  c UCP 

Note that U is a linear operator as E is linear. 

E V x V - R  

(35) 
( E a , B ) .  

Furthermore, in order to shorten the notation, let us define the following mapping: 

(CP,CP')wB(CP,CP') 

B( CP, W) E pb(u, u s ,  v ' )  +pb(Vs ,  v , v ' )  + pb(V ,  V ,  v ' )  - b( Bo, B,v' )  - b(B, B ~ , v ' )  
- b( B ,  E ,  v ' )  + b( v , Bo + B ,  B') - b( Eo + B ,  U ,  B') 

- b ( B o + B , ~ s , B ' ) - b ( ~ s , B ' , B o + B )  (36) 
where Q = ( U ,  E )  and CP' = ( U ' ,  B'). Note that the mapping B is manifestly linear 
in the second argument but nonlinear in the first one. 

Now, we add equations (33) and (34) and use equations (35), (25), (36); thus, we 
the ~oiiowing (weakj quriioiil 

( ( U @ , * ) ) + B ( @ , * ) =  ( f s , ~ )  (37) 
where CP = ( u , E )  and Q! = ( w , C ) .  

We can now establish the following weak formulation of problem (15)-(19): 
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problem (weak solutions). Under the previous hypotheses for 0, v s  and Bo, find 
Q = (u,B) E V such that equation (37) is satisfied for all Q = (w,C)  E V .  

Note that we do not require the solution to be smooth, since we look for it in 
V = V, x V, and not in V ,  x U,. For a thorough discussion on the weak formulation 
of problem of thii kind see Ladyzhenskaya (1963), Rmam (1979) and Sermange and 
Rmam (1983). We only remark here that it is not obvious at all how the second 
mndition of equation (19) is recovered; as far as this point is concerned, see Duvaut 
and Lions (1972). 

4. Existence and estimate of weak solutions 

We proceed considering the question of existence of the previously defined weak 
solutions. As we shall see, proving existence also yields an estimate of the solution(s). 
The mathematical techniques we are going to use are classical for problems of this 
kind (Ladyzhenskaya 1%3, Rmam 1979); nevertheless, since we describe k " t y  by 
the Braginskii operator while in previous work the Laplace operator was always used, 
w.z u,,a,, ,m*r L" U,'). "UL a 'yCC" ,Z',",J*m .*,U1 , c a p & ,  I" ",In pun. .  L. 

To investigate the solvability of the weak problem we established earlier, we are 
going to take the following steps: 

(i) formulate the problem in terms of solvability of a (nonlinear) equation in the 
product space V, 

(ii) write this equation as a fixed-point equation; and 
(i$ investigate the so!vah;lity of this fixed-point equation by using a theorem 

First, we consider the right-hand side of equation (37). We have trivially that 

p m a m  1979), the last quantity is less than or 

..- "I.̂,, L̂..- *- __I. -... " "..-A"l ...*,..-:. ..**l. f,. tl.:" ..A... 

which yields existence but not uniqueness. 

I(fs,w)l 6 l l ~ ~ l l ~ ~ ( n ) l l ~ l l ~ ~ ( n ~  < l I f s l l~ . (n ) l l~ l lw~(n)~  moreover, as the norm II -111 
is equivalent to the norm ( 1  0 

equal to a positive constant times (IfsllL.(n)llwII1. Therefore, the mapping 

is a bounded linear functional (note that, from equation (25), it follows trivially 
that llwlll < lIQ!l/,& and llCllz < ll*ll/JT). According to Riesz's theorem, the 
functionai (38) can be represented-in the form ( fs, w )  = (( Fs, q)) for one and only 
one element Fs E V; clearly, the second component of Fs is equal to zero. 

Next, we consider the term a(@,*) in the left-hand side of equation (37). 
lXis quantity (see definition (36)) is a h e a r  combination of b-forms; each b-form 
has, among its arguments, either w or C (U, and C never appearing together). 
As the trilinear form b is continuous on ( H ' ( 0 ) ) 3 ,  the estimate ( B ( @ , Q ) (  < 

~ ~ l l a ~ l l ~ ~ ( ~ )  clearly holds; here, cr are non-negative quantities which do not 
depend on q, and a7 is either w or C. Since, as we said, the norms 1) / I 1  and 1) JJa 
are equivalent to the norm 11 I l w l ( n ) ,  this estimate also holds with cI replaced by 
other constants c: and the norm in H ' ( 0 )  replaced by )I )I1 (for w )  and ) I  ( I 2  (for 
C). Finally, remembering the remark which follows equation (38), this estimate also 

iu 
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holds with dT replaced by other constants c:' and the norm IIwII, and llCllz replaced 
by 11Wl1. Hence, we conclude that, V@ E V ked, the mapping 

B(@,.):V-R 

@++E(@,@) (39) 

is a bounded linear functional. Proceeding as after equation (29), we see that there 
exists an operator B: V -+ V such that B(@, W) = (( bcP, Q)). The operator B is 
clearly nonlinear. 

Thus, going back to equation (37), we can write it in the following way: 

( ( U @ ,  + ( ( E @ ,  Y.1) = ( (Fs ,  Q)). (40) 

It is advantageous to invoduce the constant operator C,: V -+ V such that @ c 
C,@ E F, for all @ E V ,  and also the operator Z 

The element @ E V is a weak solution of our problem if and only if equation (40) 
is satisfied for all W E V .  Therefore, the weak problem reduces to sowing the 
nonlinear equation 

C, - B.  

U @  = Z@ (41) 

in the space V. 
The next step is to prove that the operator U is one-to-one, so that equation (41) 

a n  be written as a fixed-point equation. Hence., in the following part of the analysis 
we master the properties of U. 

As we. already remarked, the operator U is linear. Therefore, the mapping 

is a bilinear form. Moreover, it is bounded; this property is inherited from the bilinear 
form & defined hy equation (28). In fact, in relation to the mapping (29), we noted 
that f is bounded in the second argumenq we can easily convince ourselves that this 
holds for both arguments, so that a constant e exists such that (E(a,b)( < e ~ i a l ~ l ~ / b ~ ~ l  
for all a ,  b E V,. Thus, we can write the following estimates: 

where @ = ( u , B ) .  Equation (43) shows that the bilinear form (42) is bounded. 
Next, we prove that the form (42) has another interesting property: it is coercive. 

As before, such a property is inherited from the form &. First, note that ( ( U @ ,  a)) = 
& ( u , v )  + ~11Bll;. As regards the form & with equal arguments, we are going to write 
a chain of estimates fiom below which manifestly hold if we notice that: 
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(i) The tensors Waij (a = 0,. . . ,4) are symmetric, since nij is symmetric 
(Braeinskii 1%5k . -  

(ii) Wij  = E:=, Waij (Braginskii 1965); 
(iii) waijWaij = 0 when Q # p (Braginskii 1965); 
(iv) E:=,, ta < dTFi((C:=, < ; ) ' / a  for all (n + i)-tuples (to,. . . ,tn) E P+' 

(Cauchy-Schwarz inequality); 
(v) U = O o n  r a n d  V . U  = 0 in R. 

Moreover, setting Goij,kl Aai j ,k l  + A,ij ,rk and carrying out a somewhat iong ai- 
gebraic analysis, we can see that G,ij,kl = Gakl, i j  for a = 0,2 ;  Ga,i,kI = -Gakl,ij 
for Q = 3,4; and neither equality holds for a = 1. Therefore, remembering equa- 
tion (28) and setting & = E:=,&,, we have that E, and E, are symmetric, C3 and 
E4 are anti-symmetric, and Cl is neither symmetric nor anti-symmetric. The relevant 
mnsequence for us is that the terms a = 3,4 give no contribution to C ( u , u ) .  By 
using, finally, all these properties, we can write the following chain of estimates from 
below: 

Equation (44) shows that the form C is coercive. This property has a plain and elegant 
physical interpretation: the Viscous forces do always dissipate energy. In fact, we point 
out that, if U is smooth, & ( u , u )  is simply the power dissipated by the viscous forces 
in the domain a, and that from equation (44) it follows that &(U,U) = 0 implies 
U = 0. This means, roughly speaking, that the Braginskii viscosily operator is negative 
definite; also, note that we have recovered a known property of the gyroviscosity 
(connected with a = 3,4): it is non-dissipative. 

The form (42) inherits this property, as we have 

( ( U @ , @ ) )  = E ( v , u )  + qllell; 2 P*ll"ll: + 1111~11; = I1@1l1. (45) 
Since the bilinear form (42) is bounded and coercive, we can deduce, as in the 

proof oi the iax-Miigram theorem (Ciibarg and 'iiidinger i985j, timi the operator 
U is one-to-one and U- ]  is bounded; moreover, we have that 

(46) 1 1 ~ - 1 @ 1 1 <  II@II< inax { 1 ,  c} IIU-IQII. 
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Thus, we can go back to equation (41) and write it equivalently as a bed-point 
equation: 

u-'zaJ = aJ. (47) 

Tb investigate the solvability of equation (47), we apply the LeraySchauder prin- 
ciple (Ladyzhenskaya 1963). This principle is particularly suitable for problems of this 
kind since it guarantees existence but not uniqueness. 

The first step b to check that V, the space in which equation (47) is defined, is a 
separable Hilbert space (i.e. it has a countable dense subset). The space H'(f2) is a 
separable Hilbert space (Adams 1975). Remembering equation (24), that VI and V, 
are Hilbert subspaces of H ' ( O ) ,  and that they are equipped with norms equivalent 
to the norm 11 IIH,(n), we can immediately state that V is a separable Hilbert space. 

The second step is to check that the operator U-'Z is completely continuous in 
V, i.e. it maps any weakly convergent sequence {@,,} in V into a strongly convergent 
sequence { U - l Z B , }  in V. Tb prove that the operator at issue has such a property, 
we need, first, some information concerning imbeddings of Sobolev spaces. We recall 
that a normed space X is said to be imbedded in the normed space Y provided: (i) 
X b a vector subspace of Y, and (ii) the identity operator I defined on X into Y is 
mntinuous; we write X -+ Y to designate this imbedding. Condition (U) is equivalent 
to the existence of a constant A4 such that llI+ < M11& for all 2 E X. We 
say that X is compactly imbedded in Y if the imbedding operator I is compact. As 
regards our problem, from the Rellich-Kondrachov theorem (Adams 1975) it follows 
that, under our hypotheses, the compact imbedding H'(CL) - Lq(f2) holds, with 
1 < q < 6. The relevant consequence for us is that, if {(un,Bn)} is a weakly 
convergent sequence in V, then this sequence converges strongly in L4(f2) x L4(f2). 
(Note that the imbedding operator is continuous, by definition, and compact, so that 
it B completely continuous.) 

In fact, going back to the complete continuity of the operator V I Z ,  we proceed 
in the following way. First, note that, since U-' is linear and bounded, it is sufficient 
to prove that Z is completely continuous. For this purpose, let us consider an element 
Q E V and the quantity ((ZaJ, - Z@,,,Q)) = B ( @ , , , q )  - B ( @ , , , , Q ) .  We must 
estimate the right-hand side of this equality; remembering definition (36), using (as 
always in this analysis) trivial inequalities and the CauchySchwarz inequality for sums 
and for integrals, and devising plain artifices, we obtain after some long calculations 
that IB(aJ,,Q)-B(@,,Q)l < E, c ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , ~ ~ ) ~ ~ Q ~ ~ ;  here, CFL remain bounded 
as n,  m - 00 because of the strong convergence of the sequences (U,) and {B,,} in 
L4(f2), and &A is either U,-U, or B,-B,.  Therefore, setting I = Z@,,-Z@,,, 
we have that [ [Z@--Z@J! -+ 0 as n. m -+ CO, namely the operator Z is completely 
continuous. 

Since V is a separable Hilbert space and U- 'Z  is a completely continuous 
operator, the LeraySchauder principle guarantees that, if all possible solutions of 
the equation XU-'Z@ = 0 for X E [0,1] lie within some ball 11@11 < R, then the 
equation (47) has at least one solution inside this ball. 

We proceed by noticing that 

1 p q 2  < ( (U@(A),@(A)))  = ((XZ@[A),@(A))) 
= X ( ( F s , @ ( A ) ) ) -  X B ( @ ( A ) , d X ) )  

< IIFsllll@(~)ll + IB(@(A),@(A)) I  
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where we have used equation (45) and the fact that 17 is linear. Next, we must 
consider the mapping B with equal arguments. A careful analysis of this quantity 
shows that several terms annul each other; the result of this non-trivial calculation 
the following (see appendix B): 

B ( W , d X ) )  

Now, we estimate suitably the right-hand side of equation (49). After a long calcula- 
tion we obtain 

IS(@@), W)l 

Here, M i  (i = 1 , Z )  is the imbedding constant of the compact imbedding y(llell i)  + 

L4(Sl); note that it depends only on n. Using equations (48) and (50) we obtain 

From equation (51) it follows that, if 

then the norms 116(A)11 are uniformly bounded. Therefore, if the condition (52) is 
satisfied, at least one weak solution of our problem does exist. The requirement is 
that the source must be sufficiently small or the viscosity and resistivity sufficiently 
large. 

Moreover, for the solution(s) the following estimate holds: 

Oiie wG;c =p:, tyb es:ima;e sh=ws. h.,a; t\e ;he \AaGgpj and iesis:$&j; aie 
(or the smaller the source), the smaller 11@11 is: i.e. the dissipation quenches the flow 
velocity and the plasma currents. In particular, if the source vanishes we have that 
@ = 0, Le. the flow velocity vanishes and no current flows in the plasma. (We recall 
that we assumed there is no loop voltage; in the presence of loop voltage, another 
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positive quantity would appear in the numerator of equation (53) and a non-trivial 
solution could exist even if the source vanishes.) 

As we have already remarked, the solution(s) whose existence we have proved 
may be nonsmooth. As a matter of fact, they may have so little regularity as to be. 
hardly considered significant from the point of view of physics. Nevertheless, we point 
out that, for the steady-state NavierStokes equations, Cm-regularity of the domain 
and of the force field implies Cm-regularity of the solution(s) (see Rmam (1979) on 
page 172); it is Clear that the same can be expected to hold for the model we are 
analysing here. 

Equations (52)-(53), together with the condition for uniqueness we are going to 
derive and this study of the Braginskii viscosity operator, are the main results of this 
analysis. 

In section 2 we briefly discussed the assumption of a given uniform plasma density. 
The generalization of the existence theorem to the case in which p is a further 
unknown is, as a matter of fact, a very difficult task one should clearly generalize 
theorems which hold for viscous compressible flows, the mathematical theory of which 
is of vely great complexity and still incomplete. The analysis of a model in which 
the dependence of the viscosity and resistivity coefficients upon the unknowns is 
taken into account is even more difficult; indeed, such an analysis does not seem 

generalized to the case in which plasma density, resistivity and viscosity coefficients 
have a given (sufficiently regular) space dependence. Suppose that these quantities 
belong to the class P(2)  and that, in 2, they are greater than or equal to respective 
positive constants; one could proceed (cf equations (4) and (13)) by looking for G s  E 
(Cm(a))3 such that V . d, = S in 0 and 5 ,  = Go on r, setting (cf equation (14)) 
v = ( G s  + i i ) / p ,  and considering the field 6 as new unknown. All extra terms 
generated by the space dependence of these quantities do not seem to alter the 
mathematical structure of the problem; in fact, one could introduce a form which 
generalizes the form (28) and (still being bilinear, bounded and coercive) plays the 
same role; and these extra terms would not prevent the nonlinear operator appearing 
in equation (41) from remaining completely continuous. Of course, the condition 
for existence of at least one weak solution would change if plasma density, resistivity 
and hcosity coefficients are allowed to have a space dependence. fi$ this question 
seems significant, we are currently working on it and shall present the results in a 
forthcoming research note. 
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fc2gjh!e. a. mp mntraq,, we be!ievp that the ey&enc.p SAgQ!! presented here. en  hp 

5. Uniqueness of weak solutions 

We conclude this study by dealing with the uniqueness of the solution. Suppose that 
condition (52) is satisfied, and that 'JJ = (u ,B)  and a' = (u',B') are two solutions; 
let us define A E - a' (E V). Thus, equation (37) is satisfied (for all @ E V) by 
both @ and W; therefore, choosing \I, = A and remembering that U is linear, the 
following equality holds: 

(( U A ,  A)) = B( W ,  A )  - B(@, A ) .  (54) 

A proper calculation of the right-hand side of equality (54) is not straightforward at 
all; the result of this non-trivial step is the following (see appendix B): 
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E(@' ,  A)  - B ( @ ,  A)  

= ~ / n d ~ " ( A ,  x U S ) .  (7 x A,) + P b ( 4 , , A u , u )  

+ ~ d 3 z ( u s x A B ) . ( V x A B ) +  d 3 z ( A B x A u ) . ( V x  B') 

+ ~ ( A B , u ' , A B )  (55) 

J ,  
where we have defined A, E U - U' and AB E B - B'. Now, we use equations (45) 
and (54)-(59, and estimate the right-hand side of equality (55); we obtain 

For both @ and @' estimate (53) holds; using it in the estimate (56), we obtain 
llAl12 < 11A112x, with x depending neither on Q nor on @'. Thus, if x < 1, then 
llhll = 0, Le. A = 0, i.e. @ = @': there exists only one solution. This condition is 
explicitly 

The requirement for uniqueness expressed by this formula is of the same kind as 
that for existence. It is important to remark, however, that condition (57) is more 
stringent than condition (52). 

6. Conclusions 

Based on the assumption that some difficulties in the ideal MHD model for toroidal 
equilibria may be surmounted by taking dissipative processes into account, we have 
analysed a general dissipative hiHD model in which the nonlinearities are accounted 
for in a self-consistent way. The dissipative processes that we have mnsidered are 
resistivity and Viscosity as described by the Braginskii operator, concerning which we 
have shown that it has the expected (but, up to now, not proved) property of dis- 
sipating energy for any flow velocity field which does not vanish almost everywhere. 
Having established a problem for weak solutions, we have ngorously proved an ex- 
istence and uniqueness theorem, and obtained an estimate of the solution(s). There 
exists at least one weak solution provided the dissipative processes are sufficiently 
strong, or the plasma source sustaining the pressure gradient is sufficiently small; 
uniqueness holds under a condition of the Same kind, but more stringent. 
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Several questions seem to deserve further consideration and analysis. Although 
the existence and uniqueness conditions that we have obtained may turn out, because 
of the techniques which have had to be adopted to derive them, to be far too stringent, 
a numerical evaluation of them with parameters of interest for controlled fusion 
research would yield valuable insight WO generalizations of the model analysed here 
would be significant: 

(i) the account of more general boundary conditions than those relative to a 
perfectly conducting wall; and 

(ii) to relinquish the assumption of uniform density which would become another 
unknown. 
We point out that the latter generalization is not at all straightforward; in fact, one 
should dearly generalize existence and uniqueness theorems which hold for viscous 
mmpressible flows, the mathematical theory of which is of very great complexity and 
still rather incomplete. Fmally, a (theoretical and computational) thorough analysis 
of bifurcation phenomena for this model would prove very significant and, we be- 
lieve, even relevant to the interpretation of some aspects of the experimental results 
obtained in research on controlled thermonuclear fusion. 

Appendix A. ’Ihe hydrodynamic limit 

The NavierStokes problem can manifestly be studied as a particular case of problem 
(15)-(19). One must consider: 

(i) equation (15) in which: (a) us, E,, B are set equal to zero; @) V is replaced 
hy p*A; (c) the field fs is replaced hy a given, sufficiently regular, force field f ;  

(ii) the former condition of equation (17); and 
(iii) equation (18). 
The different Viscosity operator has no significant consequence for the analysis. 

In fact, assuming that U and w are smooth (cf equation (28) and what follows it), we 
have that ( -p*Au,w)  = p*( i3 i~ ,0 iw) ;  thus, instead of definition (28). we ought 
to set fNs(a,b) E p*( (a ,b ) ) l .  Since C,, is obviously bilinear and bounded, and 
satisfies equation (U), this assertion is manifestly true. 

Therefore, equation (52) tells us immediately that for the NavierStokes problem 
at least one weak solution always exists. Note that it is the presence of the source 
which seems to prevent problem (15)-(19) from being solvable for small viscosity or 
resistivity (see Ladyzhenskaya (1%3) on page xi). 

As regards uniqueness, condition (57) clearly becomes ~ h f ~ ~ ~ F ~ ~ / p ~ ’ ~  < 1. 
Writing F ,  = (F,,O) we have that llFll = ~ ~ ~ F u ~ ~ l ;  moreover, note that 
( f , w )  = ( ( F , q ) )  = ~ * ( ( F - , W ) ) ~  E ( ( f , ~ ) ) ~  where f~ p*F,,. Thus, the condi- 
tion for uniqueness becomes p h f ~ ~ ~ f ~ ~ l / ~ ~  < 1. 

These important existence and uniqueness results for the Navier-Stokes problem 
are well known (Ladyzhenskaya 1963). 

Appendix B. Elucidation of some non-trivial calculations 

The derivation of equalities (49) and (55) is not straightforward. The main properties 
which must be used are the following: 

(i) The form b is trilinear. 
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(ii) For all E E V; (i = 1,2), and for all [',(" E H1(Q) we have b(€ ,F' ,€")  = 

(:U) Rx all € ,E ' , [ "  E H 1 ( n )  we have b(<,E',(") - b(<",<',E) = J, d3z(E x 

(iv) V x 23, = 0 in 0. 

- b ( € , t " , € ' )  and, in particular, b ( € , c , [ ' )  = o .  
E " ) .  (V x <'). 
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